Data Viz Done Right

May 23, 2015

Dear Data Two | Week 5: Things We Buy

Week 5 of Dear Data Two was pretty straight forward, but took a bit of data blending to make it work. I had two goals for this week:

  1. Track every purchase that I make
  2. Categorize each purchase by the type of goods
  3. Locations each place where I made a purchase

Precise times were taken from purchase receipts, along with the categorisations. I then recorded the locations of each place by Swarm check-in, which were uploaded to a Google Sheet via IFTTT. I downloaded both sets of data into excel and manually joined them (there were only 19 records so it wasn’t much effort to do manually).

I then explored the data in Tableau, to see what stories I could find, if any. This week took me longer than I was expecting, mostly because I was having trouble finding anything interesting in the data. The one point that stuck out the most is that I spent more on ice cream than Mother’s Day. Oops! Please don’t tell my mom.

Click on the image below to explore the story.

May 19, 2015

Tableau Tip Tuesday: How to Label the Top of Stacked Bars

This week's tip covers two methods for displaying the total of a stacked bar chart.  Click on the image to view the video.  Enjoy!

May 18, 2015

Makeover Monday: How Much Water Is Used to Produce Your Food?

Quick makeover this week (we have a Segway tour of Boston at #Inspire15 in 30 minutes). I saw this graphic on the LA Times about the amount of water it takes to produce a single ounce of food.

It’s cute and it’s interactive, but it’s not very good for making comparisons or ranking. Bubble plots are notoriously difficult this way. For example, tell me quickly which food uses the 3rd most water? Tough to tell, right? I also don’t understand why they grouped fruits and vegetables together.

I manually recreated the data in Excel, which you can download here. Hopefully I recorded everything correctly; if not, please let me know. I then quickly built a chart in Tableau. I’ve addressed the issues that bubbles present, ranking and comparison, by using a bar chart instead.

Going back to the previous question, using my viz, which food uses the 3rd most water? Simple right? How about the 10th most vegetable? That’s simple too; all you need to do is click the color on the right.

May 13, 2015

Dear Data Two | Week 4 - Mirrors

No comments
The week theme for Dear Data Two was “Mirrors” (You can follow Dear Data Two here). I explored the data in Tableau and created this story about my week of mirrors and reflections. This was quite a tough week from a data collection perspective. I’m not totally satisfied with my analog version, but done is better than perfect.

Tableau Tip Tuesday: How to Create Waterfall Charts

No comments
I've missed the last few weeks of #TableauTipTuesday, and technically it's Wednesday in London, but pretend I'm in California and it's Tuesday. This week, I show you how to create waterfall charts in Tableau.

The first example is very basic; I did this intentionally so that the steps would be super easy to follow. The second example is only moderately more complex; it looks at Tableau's SEC financial filings from 2011-2014.

May 11, 2015

Makeover Monday: Why Are There so Many More Muslims in U.S. Prisons? recently published an article about the difference in the religious beliefs of prisoners in the U.S. vs. the general U.S. population. In this article, they provide this table:

They go on to do an analysis, but never really address the story the data is telling in this table. Clearly what this table is screaming out for is to show the difference between the two populations. I’ve been on a bit of a slope graph kick lately, so that’s what I’m using again this week. Why? Because I find slope graphs to be an excellent way to show variances between two data points. Click on the image below for the interactive version.

The slope graph clearly makes the differences stand out. One can easily see that there are fewer Protestants and Catholics in prison, and at the same time see that there are way more Muslims in prison. I then like to supplement the slope graph with a bar chart that shows only the differences.

There’s no clear evidence available as to why this is, but representing the data this way leads to more questions and more discussion. Any time you design a viz and it continues the conversation, you’ve probably done something right.

May 4, 2015

Makeover Monday: Which NFL Teams Were the Biggest Overachievers and Underachievers in 2014?

No comments
The NFL Draft was this past weekend, which for many people is the biggest day of their year. It’s the day that all teams have renewed hope for the upcoming season. This got me thinking back to a viz I saw from Cork Gaines back in January that I had tagged for a makeover.

My biggest problem with this viz is that I have to turn my head sideways to read it. In addition:
  • The length of the bars isn’t accurate.  How can +4.5 be longer than -5.0?
  • The bars are in reverse order - the biggest overachievers (Dallas) should be first.
  • I have to do the math in my head to get to their predicted wins.

My first thought was to see what this viz looked like it I rotated it counter clockwise.

That definitely makes it more readable, but the story still doesn’t stand out. What the data is screaming for is to show the change and emphasize the winners and losers. To this end, along with accounting for the observations above, I created this interactive version in Tableau. Click on the image below to activate the interaction.

May 2, 2015

Dear Data Two | Week 3 - A Story of Thanks

This week’s theme for Dear Data Two was “Thanks” (You can follow Dear Data Two here). I explored the data in Tableau and created this story about my week of email.

April 27, 2015

Makeover Monday: Where Is the Global Talent Pool Expected to Come from in 2030?

Twitter follower Sean Trout sent me a link to this tweet from OECD:
These pie charts are part of a larger study conducted by OECD, which you can read here. Some thoughts about these pie charts:

  1. The author is trying to show the change from 2013 to 2030. Using two pie charts makes this more difficult than necessary. At least, though, they kept the countries in the same order.
  2. The pies do not add up to 100%, I assume due to rounding. The 2013 pie adds up to 101% and the 2030 pie adds up to 102%.
  3. The focus is on the top 20 countries, so the “Other” category isn’t needed.
  4. The labels on the pies include both the country name and the value. A table would be better than this. Adding all of these labels makes the chart way too busy.
  5. There are two key metrics in the data: share of degrees and the number of degrees. The pie chart doesn’t provide enough context for understanding where the number of degrees will be coming from.

Given all of the above, I decided to create a slope graph.

  1. I included a parameter which allows you to select the metric. 
  2. This option, along with using a slope graph, really helps show how dramatic the change is for China and India. 
  3. Switch back and forth between the parameter options and you’ll see quite a different story.

April 23, 2015

Dear Data Two - Week 2: Transport

Jeffrey Shaffer and I are two weeks into a year-long weekly hand-drawn data viz project we’re calling Dear Data Two. The project is entirely modeled after the Dear Data project Giorgia Lupi and Stefanie Posavec are doing. Jeffrey and I thought this would be a great way for us to remove ourselves from software and work on being more “artistic”.

The week 2 theme was “Transport”. Jeffrey tracked his step pattern around his office.

While I tracked the places I went all week and how I got to each place. What was different for me this week is that I started with Tableau and then went to hand drawn. Going forward, you can keep up with the project at, where you can read more about our thoughts and how we created each postcard.